
PROCEEDINGS of the FIFTH 
BERKELEY SYMPOSIUM ON 
MATHEMATICAL STATISTICS 

AND PROBABILITY 

Held at the Statistical Laboratory 
University of California 
June 21-]uly 18, 1965 

and 
(Pecember 27, 1965-]anuary 7, 1?6.°"D 

with the support of 
University of California 

National Science Foundation 
National Institutes of Health 

Air Force Office of Scientific Research 
Army Research Office 

Office of Na val Research 

VOLUME IV 

BIOLOGY AND PROBLEMS OF HEAL TH 

EDITED BY LUCIEN M. LE CAM 
AND JERZY NEYMAN 

UNIVERSITY OF CALIFORNIA PRESS 
BERKELEY AND LOS ANGELES 

1967 



THE CONCEPT OF IDENTITY OF
GENES BY DESCENT

OSCAR KEMPTHORNE
IOWA STATE UNIVERSITY

1. Introduction

The idea that the underlying mechanism of inheritance is the transmission
according to elementary laws of probability of particulate units was, of course,
due to the genius of Mendel. If one of the parents of an individual only has
an A gene and an offspring has an A gene, then the A gene of the offspring is
a copy of the A gene of the particular parent, and the two A genes are identical
by descent. Mendel knew this, even though he did not use precisely these words
to express the fact. Early in the rediscovery of Mendel's work, mathematicians
or statisticians or biometricians (whatever one wishes to call the individuals)
were impressed by the mathematical interest of the Mendelian system. It was
realized early, of course, that inbreeding, that is, the mating of related indi-
viduals was an important tool for the understanding of genetic phenomena.
It, therefore, became necessary to develop some of the theory of inbreeding.
Pioneers in this work were Robbins and Jennings. But the great advance was
made by Sewall Wright [7], who, it appears to me, singlehandedly developed
the method of path coefficients to enable the answering of many important
questions of inbreeding. The magnitude of Wright's contribution stuns my
imagination. It is true that much of his work was algebraic computation and
this any one could do. But the erection of a framework for the computations
was a great intellectual feat. It would not, however, be stretching the history
to say that to most of the world the method of path coefficients was a mystique,
obviously very powerful in the hands of its inventor, but quite obscure to many
others. Perhaps the cornerstone of Wright's work was the coefficient of correla-
tion of uniting gametes or the coefficient of inbreeding F and Wright developed
knowledge of the progress of F with various systems of inbreeding.

It appears to be the great contribution of Mal6cot [5] to put the Wright
ideas into a form which was more readily understood and communicable, by
introducing the ideas of genes being alike by descent and by considering in-
breeding purely as a matter of probability of genes being identical by descent.
To fix the ideas, let a diploid individual X have two genes a, b at a locus. Then,
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334 FIFTH BERKELEY SYMPOSIUM: KEMPTHORNE

the coefficient of inbreeding F is the probability that genes a, b have arisen by
the copying process of reproduction from a single gene in the ancestry. At the
same time Mal6cot defined the "coefficient de parente" (which I translated as
"coefficient of parentage") of two individuals X and Y as the probability that
a random gene of X and a random gene of Y at the same locus are identical by
descent. The inherent simplicity of these ideas is conveyed in the simple for-
mulae for diploids,

Fxxy = rxy,
(1.1)

rA(Bxc) = 2 (rAB + rAc)-

It is then a relatively simple matter to develop the progress of F over genera-
tions of inbreeding. The great bulk of the elementary results is given in my
book [4]. Of course, the ensuing result is a function of the status of the base
population from which the probabilities are calculated, and this is true what-
ever mode of calculating probabilities is followed. The criticisms by Fisher [1]
of Wright's F are, therefore, clearly unfounded.

Mal6cot [5] applied these ideas also to the progress of a finite population
and to quantitative inheritance. Later I [3] showed that the covariance of two
relatives X and Y, neither of which is inbred, in a random mating population
without linkage, with respect to a metrical trait, which contains a random
environmental contribution, is equal to

(1.2) 2rxyaA +u2r4+ E x)ID
r+s=3

where rxy is given above and uxy is the probability that the genes of X are
identical by descent to the genes of Y at a locus, and Ao, a, and so forth, are
components of genotypic variance. More recently Harris [2] has generalized
this result to the case when the individuals X and Y are inbred, that is, have
nonzero coefficient of inbreeding, and his ideas were a stimulus to some of the
material I present later.

It seems to be inherent in the concept of identity by descent that the processes
of genetics for which it has utility are processes which do not depend on the
actual identity of the genes. Thus, each gene is to be subjected to the same
probability processes as every other gene. In contrast to this, if the different
genes have different selective values (however this be defined), their fates in
the evolutionary process will depend on their actual names. So the idea of
identity by descent has so far been applied only to the processes of a genetic
population with "neutral" genes. I would not wish to imply by this, that I
believe there are any such "neutral" genes. It was thought at one time that
there were genes that were "neutral" as regards "selective fitness," but every
such case has been shown later to be fallacious. Looking back, one may well
wonder how the idea was ever judged reasonable, but perhaps I am using
hindsight which is always better than foresight.



IDENTITY OF GENES BY DESCENT 335

One should not, onl account of the above, consider that a theory of the progress
of a population with "neutral" genes is irrelevant, because such a theory gives
a base of reference by which to evaluate the lack of neutrality of genes.
The applications of the concept of identity of a pair of genes to regular sys-

tems of inbreeding are reviewed extensively in my book [4]. The aim of the
present paper is to present some basic ideas of the application to the progress
of finite populations, and to describe some extensions of the basic idea to the
status of more than two genes.

2. An elementary use of the concept

Suppose we start with a diploid population of size N, having N1 A genes and
N2 a genes, with N, + N2 = 2N. Suppose that there is no selection, mutation,
immigration or emigration. Then, the fate of genes is determined solely by the
elementary probability processes of Mendelism. Suppose also that each genera-
tion arose by mating of individuals of the preceding generation, these matings
possibly being based on consanguinity, but random within any consanguinity
restrictions. Suppose also that we can calculate oni the basis of the mating sys-
tem, the probability that two genes of an individual are identical by descent
and find this to be F, say. Then the probability status of this individual is
given by the array

(2.1) F{$NjAA+N2aa}

+ (1 - F) 2N(2N-1)N(N, - 1)AA + N,(N2 - 1)aa + 2NIN2Aa}.

That this is so follows by elementary arguments because the two events: (i) the
genes of an individual being alike by descent and (ii) the genes of an individual
being unalike by descent, are mutually exclusive, with probabilities F and 1 - F,
respectively. In the absence of any selection, the conditional probability that a
single gene from which a pair are both descended is an A gene is equal to
N1/2N, and that it is an a gene is N2/2N. If the genes are copies of two different
genes in the base population, the probability that both are A genes is
Nj(Nj - 1)/2N(2N - 1), and so on.
This argument gives then the probability status of a random individual with

coefficient of inbreeding F. It is to be noted that it cannot be used to give the
probability status of two individuals. In fact the argument gives only the status
of two genes united in the particular individual.

If, of course, N, and N2 are both indefinitely large with N,/2N = p and
N2/2N = q, the probability status of an individual is

(2.2) FpAA + qaa + (1 - F)p2AA + 2pqAa + q2aa.

The generalization to k types of genes is quite obvious.
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3. A finite dioecious population

Suppose we have a finite population of N individuals, and that each member
of a succeeding generation arises by random mating. Let the individuals in
generation t be
(3.1) A1,1A 12, A 21A22, *.. , ANjvA N2.
A possible mating
(3.2) A'1Ai2 X At".Ai"2
gives the offspring array

(3.3) 1 [A'1A'1 + A'1A'i2 + Ai2A'i1 + Ai2AI'2],

so that the inbreeding coefficient Ft+1 of any individual in generation (t + 1) is

(3.4) N(N1- 1) PA = At,j j,j' free,

which is the average coefficient of parentage of two individuals in generation t.
So

(3.5) Ft+, -= Rt.
An obvious argument gives

(3.6) Ri+i = N2 [N 2 (1 + Ft) + N(N - )Rt],
and the well known conclusion

1(3.7) Ft+2 = + (1- )Ft+i + Ft

follows. This argument seems superior to that presented in my book [4].

4. A finite haploid population with random viability

A common way of handling the two conflicting aspects of finiteness of popu-
lation and variability of number of offspring per individual is to follow a con-
ditioning argument. One may suppose, for instance, that the individuals of the
finite population produce offspring independently according to a Poisson distri-
bution, and then consider the probabilities of numbers of each type conditional
on the total offspring population being equal to the population size N. This
process is mathematically workable and is a way of introducing reproductive
competition. I find some obscurity in understanding the effect of this condition-
ing on the distribution of actual number of progeny in the population, though
presumably this can be worked out.
An alternative easy approach with regard to homozygosity can be worked

out by means of the concept of identity of genes by descent in the following way.
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Conisider the population at generation t with individuals

(4.1) All, At2, *.*.* AtN.
Take a distribution of a nonnegative random variable X. Let N random values
be x1, X2, * , XN, and let

(4.2) Pi=

Let the probability that an individual in generation t + 1 arises from individual
Al be pi, from individual A2 be p2 and so on. Label the individuals in generation
t + 1 as

(4-3) Al1', A2+1, ... AAN 1.
Then, with independent drawing for each individual of generation (t + 1), we
have
(4.4) P{A'U+ = = E p2 + E pipi'P{At = At},

where the P are probabilities of genes being identical by descent. The left side
is the same for all pairs of individuals after the first generation, so we can write

(4.5) Ft+, = E pt2 + 1_ ] Ft

or with P = 1 - F, so that P is the panmictic index of Wright,

(4.6) Pi1l = (1-E pt)Pt.

Hence, if u2 is the second moment about the origin of the "viabilities," the pi,
we have

(4.7) P,+± = (1 - NA2)Pt,
a very simple recurrence equation. In the special case when all pi equal 1/N,
the equation is

(4.8) Pt+= (1- 1 )P

which is very well known.

5. A simplified two niche problem

I am indebted to E. Pollak for the following example and some ideas about it.
The progress of a population divided into two parts, or niches, between which
there is random migration is of some general genetic interest. Suppose the
generations do not overlap, and that in niche 1 in generation t, the genes are

(5.1) Ali, At2, * *, AIM,

and in niche 2 the genes are

(5.2) A2,y At2, At2,
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Suppose a gene for niche 1 in generation (t + 1) arises with probability (1- p)
from niche 1, and with probability p from niche 2, and similarly for a gene in
niche 2. Define,
F-i= probability that two genes in niche 1 in generation t are identical by

descent,
F2') = same for two genes in niche 2,
RI = probability that a gene in niche 1 and a gene in niche 2 in generation t

are identical by descent.
Then, with no selection of any sort, the probability array of a gene in niche 1
in generation t + 1 is

(5.3) (1- P) [N-All + NA12 + + NA'Ni

+
N7A2', + NA22 + ***+ NA2N.]

Hence, P{A'lu+ = AV1P}, the probability that two genes, labeled for conven-
ience as u and v, in niche 1 in generation (t + 1) are identical by descent is
equal to

(5.4) (1 p)2 N + (1 - p)2 N(Ni -1) Ftl + P2 N2NiF (1Ni N2

+ p2 N2(N2- 1) F2 + 2(1 - p)pRt.
N22

A similar expression with the subscripts 1 and 2 interchanged holds for a pair
of genes in niche 2. Also,
(5.5) RtI+ P- Atl = A2t+,1}

(1 - P)P(Ni + ( P)pNP(N( -l)F1 + P) N2

N2 N22 p( 2

(5.6) P2+i= p2(N - 1) ptl + (1 -p)2(N2 -1) pt + 2p(1-p)t

N1 N 2 N

-= p(l -p)(N 1)p+('N2-p)(N2-1) P 2+ p)2

N2 NN2

So we have a simple recurrence relation for the three quantities P1, P2 and F,
which can be solved for any choice of N1, N2 and p.
We consider here the solution of a special case only. We shall calculate the
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values for P, R, S with reference to a base population for which we take P1, P2
and S to be unity, of course, and for which N1 equals N2. Obviously, under these
circumstances P' = P2 = P, say, so the recurrence equations reduce to two
only, namely,

pt+l [(1= -p)2 + p2] - PI + 2p( - p)St,
(5.7)

S'+1 = 2p(l - p) I1 ) Pt + [p2 + (1-p)2]St.
The characteristic equation is

[(1 -p)2 + p2] (i- )-X 2p(l -p)
(5.8) / ~10

2p(l -p) 1- ) (1 _p)2 + p2-A

or

(5.9)
\2-X (22- ) [(1 - p)2 + p2] + - {[(1-p)2 + p2]2 - 4p2(1 -p)2

=0
X2 - X(2- ) [1- 2p(l - p)] + (1- N) [1- 4p(l - p)] =O

The roots Xi and X2 are, therefore,
(5.10)

(1 -2N) [1 -2p(l -p)]

i {(1-21)2 [1 - 4p(l - p) + 4p2(l - p)2]-( - [1 - 4p(1-p)]11}
= (1-2N ) [1 - 2p(l - p)]

{( - +)4f2( [1-4p p+[1 - 4p( -)p2(lp)2]

-(1-N-)[1 -4p(l -p)]j}
=(12-N)[1 -2p(l1-p)]

i {(1-N)4p2(l -p)2 + N [-p1 )+4p2(1 - p)2]}
Pt and St are, therefore, of the form
(5.11) aA + bX2.
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A somewhat simple aniswer is obtained if one assumes that p equals c/N and
is small, so that a small number of genes migrate from one niche to the other
to produce the next generation. In this case the larger root is

(5-12) (Xl =(- N) [I1-N + ° (N2)] + [Ic2 + 4N + ° (N)]12(5.12) XI= (iN)[

which is approximately equal to

(5.13) 1 - [1 + 4c - (1 + 16C2)1/2].

This result is related to the results of Moraii [6]. Other results in connectionl
with population subdivision have been obtained with this type of argument by
my colleague E. Pollak.

6. The consideration of triples, quadruples, and so on, of genes

Just as one can consider the probability that a pair of genes are identical by
descent, one can consider the status of a triple of genes, or a set of four genes
and so on. Harris [2], in his generalization of the work on covariance of two rel-
atives, X and Y with genes say x8, Xd, for X, and ye, Yd for Y, the subscripts s and
d denoting genes received from sire and dam, respectively, found it necessary to
consider all the possible configurations with regard to identity by descent of the
four genes. The possibilities are as follows in which vertical bars separate groups
of genes identical by descent

XS Xd Y., Yd X. Xd y. Yd
X. Y. Xd Yd

Xs Xd Yj Yd XS YdI Xd| Y.
X4 Xd Ydl|Y Xd Yej Xs |Yd
XS Ys Yd Xd Xd Yd |X, Ys
Xd Ye Yd | X, Ye Yd | X d

XS Xdl Ys Yd X. Xd YYe | Yd-
Xe Y8 |Xd Yd
Xe Ydj Xd Ye

So, taking account of origin of the genes in an individual, there are 15 different
possibilities, and a complete accounting of the probability status of two indi-
viduals would require the determination of the probabilities of the 15 different
possibilities.
The calculus of probabilities of two genes being identical by descent is very

easy, as I have already mentioned. The general calculus of probabilities with
regard to four genes will not be easy. A beginning was made by Harris [2],
and further work is in progress.

I believe it is interesting to relate the above to Fisher's working out of the
progress under full-sib inbreeding. If for ease of typography and reading we
denote the two genes of the male by ab and of the female by cd, and if we use
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the same letter out of a, b, c, d to denote genes identical by descent, the possible
configurations are

aa X aa (1)
aa X ab (4)
aa X ba (4)
ab X aa (4)
ba X aa (4)
aa X bb (3)
ab X ab (2)
ab X ba (2)
aa X bc (,5)
ab X ac (6)
ab X ca (6)
ba X ac (6)
ab X cb (6)
bc X aa (5)
ab X cd (7).

As regards configurations for an autosomal locus, the 15 different possibilities
reduce to the 7 mating types for which Fisher did an extensive analysis. So,
as is after all obvious, Fisher's work based on the study of likeness of four
genes-is in the same spirit as Wright's study of the likeness of two genes, and
it is clearly foolish to use one piece of work to belittle the other.

7. The progress of a finite monoecious population
Let the individuals in generation t be denoted by

(7.1) At,At 2, A1At2, *... , Al1Al2.
Then with random mating, including selfing with the appropriate frequency,
every gene in generation t + 1 is an independent member from the probability
array

(7.2) A1tU+1 AtU A t M = 2N.

Let
P2,t = Ft denote P{AtJ = A',, which will be the same for all pairs

(ij) F& (i/),
P3, denote P{A' = = ,,j,,} which will be the same for all triples

which are unequal,
P4,t denote P{A' A=A,J= AttJ = At..j...} the same for all unequal quad-

ruples.
It is, of course, well known that

(7.3) P2,t+1 = + (-
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For triples of genes, there are M3 possible choices; in M of the choices the
same gene will occur; in 3M(M - 1) cases, one gene will occur twice and the
other once; and in M(M - 1)(M - 2) cases, three different genes of the pre-
vious generation will occur. So

(7.4) P3st+i
I
[M + 3M(M - l)P2,t + M(M - 1)(M - 2)P3.t]

or
1
+ 3 (M- 1) P2t + ( M

(M - 2)
M2 P2,t P3,t

In an obvious way,

+ Al3 Al3

+(M - 1)(M-2)(M -3) P4+ Al~3
If now, we let P* = - P, we have the simple recurrence relations

(7.7)

rP2 1- 1 0 0 2

P3 = 3(MA-i) (M-1)(M -2) 0 P33 J1A2 Al23

|P+ 7 (l-I ) 6(M-1)(M-2) (M-1)(M-2)(M-3) P4P*4 7 Al3 6l3 Al34

where the subscript represent the generation. The roots are obviously

78) M ( I)( _I-- )' (1-M)((1- )(1- )
or if we let

(7.9) i=l--n= 1, 2, **, I-1,

the roots are 61, 6162, 613263. The matrix of the recurrence equations then becomes

B, 0 0

(7.10) G = 1

7b, 63162 666L_J12 AIl 616

which has a particularly simple form.
The relation between P2*, P3, P4 in successive generations is then given suc-

cinctly by
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(7.11) 0 G(1GP) Got.

To determine the vector 0 for any generation we find a matrix C such that
(7.12) CGC-1 = diag (61, 5162, 313253)-
With some elementary manipulation, it turns out that

1 0 0o

(7.13) C- = M(1- 62) 1 0

7+1152 6 1

,_M2(l -62)(I -6263) M(1-63

and

o o-
13 1 0(7.14) C = M(--162)1

11 + 7B3 -6 1
_M2(1- 63)(1 -6263) M1(1 -63)

It follows that

[51 0 01
(7.15) G' = C-' 0 (1652)' 0 C,

L0 0 (316263)t
and in fact,

1 0 0

(7.16) Gt =sl M(1 -62) 0 0
7
+1152 0

,M2(1- 62)(1 - 52) 0 0

- O0 O-

+ (3132)' 1(1-62) 1 0

+M2(j(-662)(I- 6) 1 3) _3)

+ (316263)t 1_ + 7_3 -6 1

1M21(I - {83( 623 l{l 63
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or
atl1v 0 0

36 -_ 38'62 t8^8 0
M(1 - 62) 20

(7 + 1162)681
(7.17) G' M2(1 - 52)(1 - 8283)

-186813 66162 -6616263 t St atM2(1- 62)(1 -63) M(1 -63) 1 2 3

+(11 + 7 t3)1t82638
LM2(1 - 68)(1 -6263) _

If then we measure the progress of likeness by descent of genes, we take the
base population to consist of different genes and the initial values of P*2, P3*, P4
to be unity. Therefore,

P2*,t = 61,

3*' M (I -2) 81 + [1-M(1 - 62) 182

(7.18) = St t-at

p* 7 + 1182 + [ 6 18 1t t
112(1 - 62)(1-823) l+ M(1 -63) 212(1-2)(1 _ 83)1 8,82

M(-6 11 + 783 8t 81

[ M(1- 63) + M2(1 -8S)(1 -268)3 1 2 3

= (95- 61M) at, - StAb + (1 - 61M) 1 2 3-

A pair of genes can have one of the two states: identical by descent with
probability P2 (called F earlier in this paper); and nonidentical by descent
Pll (P earlier). For a triple of genes the possibilities are all three alike with
probability P3, two alike and one different P2/1, all different Pll1. It is clear that

(7.19) P2 = P3 + 1P2/11
so

(7.20) P21, = 3(P2 - P3) = 3(P3 - P2),
and
(7.21) Pllll1 = 1 - P3 - P2!1

= 1 + 2P3 - 3P2
= 3P2*- 2P.

In the case of a quadruple of genes, things are not as simple, and the probabili-
ties we need for complete description are
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(7.22) P4, P3/1, P2/2, P2/111, and P1/1lll1.
It is clear that

(7.23) P3 = P4 + 1 P3/1,

so we know P3/1 for aniy generation. The others are obtainable onily with supple-
mentary computations. We find that

1/2 = 31/ + 2M5162 P211 + 516253 P2/2,

(7.24)

t2/+l/I = 62 It/,1 + 616263 P2/111.
Hence,

pt+l 36, p* +66,2 p* *t
2/2 = 23621 + 616263 P2/2

(7.25)
P2/1/1 = AM (3P2*-2P ) + 515263 P21111.

It follows that the complete specification of the status of two, three, or four
genes is given by the equation
(7.26)

P2~ ~ ~ Si0 0 0 0 P

P3 m1 5152 0 0 0 3

P- 751 65152 P123 *
4 M~A2 Al 123

P2/2 35, -65152 65152 0 515253 0 P2/2

P2/1/1 e+l 185152 -126152 0 0 515253 P2/1/1

We note that consideration of the other possible configurations of four genes
causes repetition of the root 515253. A little algebra will yield the tth iterate of
the coefficient matrix.
The generalization of the above to the case of kplets of genes is direct, though

there are complexities of algebra. Essentially, what is involved is the making
of k independent draws from an array of M objects. There are Mk possible

results, and if we denote by [k], the number of unordered partitions of k into r

parts, the number of results in which the k draws arise from r different objects is

(7.27) [k] AI(M- 1) ... (AI1-) .
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It follows that the recurrence equation for P2, P3,* , Pk* is
(7.28)

P2*\ - 651 0 0 ... 0 2

P3 [2] M 6152 0 0*

P* [4]F 1 [4]6162 ... P*

4L2J M2 L3JM 515253 04

[k 5, k]1,12 5k15253 55 . k1 P
/ g+1 2 Mk-2 [31Mk- 4 Mk4 6162 * bk-1 Pk

or

(7.29) t+1 = Hot.
It appears that the matrix C such that

(7.30) CHC-1 = diagonal
has a nice structure in terms of 61, 62, - - - -
Some aspects of the progress of a finite dioecious population are being devel-

oped by the same approach, but I do not yet have the results.

8. kplets of genes in a finite haploid population with random viabilities

The arguments of previous sections may be combined. If we let P3, be the
probability of three genes being identical by descent, we have
(8.1) P31+1 = Pt + 3 E, p,2pi P2, + PiPj'Pi" P3t.

Let
p3 = NpI,

(8.2) p,p, = N,

and

(8.3) P3* =1i- P3.
Then,
(8.4) P3*(j+l) = 3NpiL P2*t + N311411 31.
Also,
(8.5) P2(g+l) =(1 - N1p2) P2*t.
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It follows that
(8.6) P3(,+l) - yP2(g+) = 3N2u.iP2* + N3lnP31t- y[l -N2]P2

= N3y.11[Pt - 'YP2t]
if

(8.7) N81.411Y = y(l - N2) - 3N21
or if

(8.8) 7 = 3f3N 21

(8.8) = ~~~~~~1- Nu - N31.41,,
Hence, P3 - -YP2 decreases in the ratio N3y111 in each generation.
The extension to kplets of genes is clear, though the algebra becomes very

tedious. In general, there is a form

(8.9) Pk - Yk,k-1 Pk-I - Yk,k-2 Pk*-2 -Y-k.2 P2

of the probabilities which decreases in each generation on the ratio Nky4..
where

(8.10) Nk,.A.... = E PilPi2 ... Pik-
tl 2, , k
unequal

If all pi equal 1/N, the ratio is N(k)/Nk as we already knew.
It may be noted in passing that the incorporation of mutation, at least in

one form, presents few difficulties.

9. Concluding remarks

The determination of the consequences of Mendelism with random mating
whether in a haploid population, a monoecious or dioecious population is a
matter of algebraic computation. By so characterizing the work, I do not wish
to be derogatory. The computations can become very excessive and very
tedious, particularly if one wishes to develop the probability status of the
whole population. In one way or another, this involves the determination of
the roots and both left and right eigenvectors of the particular probability
transition matrix that is a consequence of the whole system. This proves to be
very difficult, though Drs. Karlin and McGregor have made notable progress.
The purpose of my own presentation is to show that if one is satisfied with a
partial picture of the progress of the population, one may well be able to do so
by using the concept of identity of genes by descent.
From a genetic viewpoint, I am inclined to think that a working out of limit-

ing distributions using only the largest root, which is frequently of the form
(1 - 1/N) are of interest only mathematically. The common case is that the
roots are very close as (1 - 1/N), (1 - 1/N)(1 - 2/N), (1 - 1/N)(1 - 2/N)
(1 - 3/N), and so on. It would seem that the length of time required for the
situation to be describable reasonably in terms of the largest root, would be
such that the model can no longer be trusted unless mutation is included. If
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the same mutation can occur more than once, I suspect that a solution based
on only the largest root can be quite misleading at least for populations of the
size that occur in Nature. This situation with regard to the regular inbreeding
systems commonly used would appear to be somewhat different. It is evident
that many difficult problems in the dynamics of Mendelian populations remain.

It has been brought to my attention that some work on similar lines was
done contemporaneously be Michel Gillois in a thesis entitled, "La relation
d'identit6 en g6n6tique," Faculty of Sciences of the University of Paris [8].
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